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The effect of synthesis conditions (sequential precipitation, coprecipitation, and sol–gel method) on the
fractal structure of yttrium-stabilized zirconium dioxide has been investigated. It has been shown that
the difference between methods manifests itself clearly in xerogel nanostructures, viz. by the number
of fractal aggregation levels (three levels in hydroxide precipitates and two in sol–gel) and the absence
of mass-fractal aggregation in sol–gel. It is been determined that the mass-fractal aggregation of precur-
sors contributes to good filtration of hydroxide precipitates and allows preparation of oxides with soft,
readily destructible aggregates, and that surface-fractal aggregation makes for good pressability of
oxides.

� 2009 Published by Elsevier B.V.
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Yttrium-stabilized zirconium dioxide is of great practical
importance since promising materials for structural ceramics [1]
and solid electrolytes with oxygen ion conduction [2–4] are devel-
oped on its basis. The research carried out in recent years showed
that materials of the new generation can be obtained on the basis
of nanoscale precursors. It is known that nanoscale dispersions are
inclined to self-assembly of particles into ordered structures [5,6].
In this case, structure hierarchy from primary clusters to conglom-
erate is formed [7].

In resent years, the concept of fractal aggregation, which is
based on self-similarity principle, has been used to study materials
with irregular structure [8,9]. Many synthesis products of precur-
sors of new materials prepared under mild conditions (method of
precipitation of slightly soluble compounds, sol–gel technology,
etc.) may be objects with fractal aggregates. A great numeral of pa-
pers are devoted to the study of the fractal aggregation of various
materials [10–18], the information on the fractal of ZrO2-based
materials being very scanty [16–18].

The fractal aggregation processes depend on the precursor
preparation conditions and play a very important role in the mate-
Elsevier B.V.

.
chyk).

k et al., J. Non-Cryst. Solids (20
logically pure precursor of stabilized zirconium dioxide, which is
widely used for the manufacture of ZrO2 ceramics, is a system of
zirconium and yttrium hydroxides. Hydroxide precursors are gen-
erally prepared by the coprecipitation method. However, coprecip-
itated precipitates are poorly filterable and form after drying and
calcinations very strong aggregates, which require long grinding.
Changing precipitation conditions (hydroxide precipitation se-
quence, pH values) leads in a certain pH range to a considerable
improvement of the filterability of precipitates and makes for
obtaining stabilized nanoscale zirconium dioxide with weak bonds
between particles (with the effect friability of aggregates of parti-
cles). In recent years, the interest in the preparation of nanoscale
ZrO2 by sol–gel method has increased.

The study of the effect of various above synthesis method on the
fractal structure of ZrO2-based dispersion is of interest. Therefore,
the aim of the work is to study the effect of preparation conditions
on the fractal structure of precursors and solid solutions of ZrO2–
Y2O3 oxides.
78
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2. Experimental

The precursors, whose composition corresponds to the formula
0.97ZrO2�0.03Y2O3, were synthesized by the precipitation of
09), doi:10.1016/j.jnoncrysol.2009.09.012
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hydroxides (sequential precipitation (I) and coprecipitation (II)) of
appropriate metals and by sol–gel method (III).

To synthesize samples I and II, 2 M aqueous solutions of ZrOCl2

and Y(NO3)3 were used as starting salts. ZrO(OH)2 and Y(OH)3 were
precipitated with concentrated aqueous solution of ammonia. In
the case I, Y(OH)3 was precipitated on precipitated ZrO(OH)2, and
in the case II, the hydroxides ZrO(OH)2 and Y(OH)3 were coprecip-
itated. The precipitates were washed free from the mother solution
with distilled water until there were no Cl� and NO�3 ions in the
washings. The filtration coefficient (Kf) of freshly precipitated pre-
cipitates was determined by the procedure described in [19].

To prepare precursors by the sol–gel method, alcoholic solu-
tions of zirconium oxochloride ZrOCl2 and yttrium nitrate
Y(NO3)3 were used. The solutions were prepared on the basis of
96% ethyl alcohol with an overall concentration of salts in alcohol
in terms of oxides of 0.4 mol/l. After 2 weeks of holding in a closed
vessel, the alcoholic gel formed was dried at room temperature un-
til xerogel was formed.

Air-dry xerogels and xerogels calcined at T = 870 K/1 h were
investigated, which had been prepared by sequential precipitation
and coprecipitation of hydroxides and by the sol–gel method (sam-
ples I, II, III).

Thermal analysis (TGA) was performed with a Setaram
TGDTA92 equipment at a heating rate of 5 �C min�1 in air using
Pt crucibles. The measurement error of the water content in pre-
cipitates was ±0.1%.

X-ray diffraction (XRD) measurements were made on a DRON 4-
07 powder diffractometer (CoKa radiation, 40 kV, 18 mA). The
structure parameters were calculated by the Rietveld full-profile
analysis. XRD patterns were collected in the angular range
2h = 10�–150� in a step-scan mode with a step size D2h = 0.02�
and a counting time of 10 s per data point. As external standards,
we used SiO2 (2h calibration) and Al2O3 (intensity standard) [20].
The size of coherently scattering domains (CSDs) and lattice strain
were evaluated from the width of the 101 and 202 diffraction
peaks using the relation bcos h = f(sin h) = k/D + 2gsin h [21], where
b is the peak width at half maximum, k is the X-ray wavelength,
and g is the lattice strain. Peak width at half maximum and its er-
ror were determined by using Gaussian equation (Origin 7.5 pro-
gram). The error of determination of size of CSDs was ±0.2 nm.

The mechanical strength (Pm) of xerogel and oxide agglomer-
ates was determined by commonly used method from the maxi-
mum force of crushing of granules between two hard supports
[22]. The measurement error of the mechanical strength of
agglomerates was ±0.1 MPa.

The densities samples were measured by Archimedes method.
Density measurements were repeated three to four times per sam-
ple and were done with a precision of better than 0.1%, the maxi-
mum error was in the range of ±0.01 to 0.03 g/cm3.

Small-angle X-ray scattering (SAXS) curves were measured in a
vacuum Kratky camera using a Cu-anode tube as the X-ray source.
The radiation was monochromatized by total internal reflection
and a nickel filter [23]. SAXS data were collected in multiple
U

Table 1
Characterization of the samples under investigation, obtained under different synthesis co

Samples Xerogels 0.97ZrO(OH)2�0.06Y(OH)3 Pow

Rf (cm/s) H2O
(total) (%)

H2O(v)
(%)

Pm
(MPa)

Gra
(SA

SPH (I) 5.6 � 10�5 ± 0.1 � 10�5 34.6 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 12.
CPH (II) 5.2�10�6 ± 0.2 � 10�6 36.3 ± 0.1 1.5 ± 0.1 20.0 ± 0.1 11.
Sol–gel (III) – – – 18.0 ± 0.1 18.

Note: H2O(v) is the content of the water that vaporized during crystallization, Pm is me
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step-scan mode, using a scintillation detector, at scattering angles
from 0.03� to 4.0� (q = 4psin h/k = 0.022 � 2.86 nm�1), which al-
lowed characterization of microinhomogeneities 2–380 nm in size
(determined as 2p/q). The SAXS data were processed with the
FFSAXS program [23,24] to eliminate the stray scattering by the
camera and cuvette windows, normalize the scattered intensity
to absolute units, and introduce the collimation correction. The
fine powders to be studied were placed in cuvettes 0.1–0.2 mm
in thickness, with 17-lm-thick Mylar windows.

To analyze SAXS profiles, we used Beaucage’s unified exponen-
tial/power-law approach [25–28]. The equation describing an arbi-
trary number of interrelated structural levels has the form

IðqÞ ¼
Xn

i¼1

Giexpð�q2R2
gi
=3Þ þ Biexpð�q2R2

gðiþ1Þ
=3Þ

�

� erf ðqRgi
=61=2Þ

h i3
=q

� ��Pi
!
; ð1Þ

where Gi is the Guinier prefactor for level i, Bi is the Porod prefactor
(in the power-law dependence of the logarithm of the scattered
intensity on the logarithm of the scattering vector), and Pi is the
exponent defining the fractal dimension of aggregates at level i
(3 > P > 4 for surface fractals and 1 > P > 3 for mass fractals). The
mass-fractal dimension is Dm = P, and the surface-fractal dimension
is Ds = 6 � P. Rgi

is the radius of gyration of fractal aggregates at level
i. The errors of determination of Pi and Rgi

have equated ±1% and
±0.5% accordingly.
E3. Results

Table 1 presents a characterization of the samples of xerogels (I,
II, III) and corresponding oxides under investigation. As is obvious
from Table 1, the filtration coefficient (Kf) of precipitates I is by an
order of magnitude higher than that of precipitates II, and the
strength of aggregates of xerogels I (Pm) is lower by a factor of
50 than that of xerogels II. Calcined xerogels (870 K/1 h) I, II are
characterized by single-phase fluorite-type cubic crystal structure
(Fig. 1) with practically the same lattice parameters (Table 1) and
xerogel III by tetragonal structure with the axial ratio �c=a ¼ 1:44.

Fig. 2(a)–(c) shows SAXS curves for air-dry samples I, II, III
respectively and Fig. 2(d)–(f) SAXS curves for the same samples
after heat treatment at 870 K. The results of modeling of experi-
mental data are listed in Table 2. It is seen from Fig. 2(a) and (b)
that the curves are characterized by three (for hydroxide samples
I and II) and two (for sol–gel samples III) linear regions (straight-
line segments), over which the corresponding slope angle values
are given. The type of fractal aggregation for each region and fractal
dimension was determined from the slope angle of such regions.

Mass (bulk) and surface fractals are the simplest and common-
est types of fractal aggregation in disperse systems [8].

From the result presented (Fig. 2(a) and (b)) and Table 2) it is
obvious that xerogels I and II are characterized at the first lowest
nditions.

ders 0.97ZrO2�0.03Y2O3 Pills 0.97ZrO2 0.03Y2O3

in size D (nm)
XS)

CSR size
(nm)

Lattice parameters

(ÅA
0

)

Green density
(g/cm3)

0 ± 0.5 13.0 ± 0.2 a = 5.1195 ± 1 � 10�4 2.00 ± 0.01
0 ± 0.4 9.0 ± 0.2 a = 5.1197 ± 1 � 10�4 2.42 ± 0.03
0 ± 0.4 17.0 ± 0.2 a = 3.6031 ± 2 � 10�4 2.97 ± 0.02

c = 5.1807 ± 2 � 10�4

chanical strength of agglomerates.

09), doi:10.1016/j.jnoncrysol.2009.09.012
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Fig. 1. Diffractograms of calcined samples at T = 870 K/1 h: (1) sample I; (2) sample
II, (3) samples III.
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Fig. 2. Small-angle X-ray scattering curves for air-dry samples I (a), II (b) and III (c) (T = 2
vector. The linear regions of small-angle X-ray scattering curves are presented by imagina
of SAXS curves by using the Beaucage’s equation [25–28] are given over the linear regio
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and 2.5 nm and fractal dimension D = 1.1 and 1.5 respectively. This
corresponds to the formation, at the first dimensional level, of ob-
long particles with a mean diameter of d = 7.7 nm and 6.5 respec-
tively. The increase in the fractal dimensions, at this level, of
samples II in comparison with that of samples I indicates that
the particles obtained under the conditions II are more bulky [8].
This may be attributed to their higher water content [29]. The
change in the slope of SAXS curves (Fig. 2(a) and (b)) and the in-
crease in fractal dimension are associated with the aggregatability
of primary particles into surface fractals of larger size (d = 77.4 nm
for I and 56.8 nm for II). Surface fractals form at a higher (third)
structure level mass fractals for samples I and surface fractals for
samples II with a mean diameter of d = 335 nm and 387 nm
respectively.

Xerogels III are characterized, at the initial stage of aggregation,
by the presence of surface-fractal particles (D = 2.75) with a mean
diameter (ds) of 23 nm (Fig. 2(c)). At the second stage of aggrega-
tion, surface fractals (D = 2.25) with the diameter ds P 258 nm
are also formed.

As is seen from Fig. 2(d)–(f), the SAXS curves for calcined xero-
gels are characterized, independent of precursor preparation con-
E
D

P
R

95 K) and calcined samples I (d), II (e) and III (f) (T = 870 K): I is intensity; q is wave
ry straight-line segments. The corresponding slope angle values calculated by fitting
ns.
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Table 2
Structural parameters determined by fitting the SAXS curves of xerogels and powders with unified functions.

Sample Structural level Fractal type s D Rg (yv) ds (yv)

SPH (I) T = 295 K 1 M �1.10 1.1 3.0 7.7
2 S �3.63 2.37 30 77.4
3 M �2.8 2.8 130 335

CPH (II) T = 295 K 1 M �1.5 1.5 2.5 6.5
2 S �3.4 2.6 22 56.8
3 S �3.3 2.7 150 387

Sol–gel method (III) T = 295 K 1 S �3.25 2.75 9.0 23
2 S �3.75 2.25 P100 P258

SPH (I) T = 870 K 1 S �4 2 4.5 12
2 S �3.4 2.6 120 310

CPH (II) T = 870 K 1 S �4 2 6.0 11
2 S �3.4 2.6 120 310

Sol–gel method (III) T = 870 K 1 S �3.6 2.4 7.0 18
2 M �2.75 2.75 P100 P258

Note: M = mass fractal, S = surface fractal, s is the power-law slope in the SAXS curve, D is the fractal dimension, Rg is the radius of gyration of fractal aggregates, and
ds = 2.58 � Rg. The errors of determination of the power-law slopes (s) in the SAXS curves and of the radiuses of gyration of fractal aggregates (Rg) are �±1 and ±0.5%
accordingly.

Fig. 3. Size distribution curves for sequentially precipitated and co-precipitated
aggregated hydroxides after calcination at 870 K.
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Editions, by two linear regions, indicating the presence of a two-le-
vel fractal structure in the calcined powders. At the first structure
level, surface fractals of 11.6, 15.5 and 18 nm size are formed for
samples I, II and III respectively. The values of fractal dimensions
are 2 for samples I and II and 2.4 for samples III. This indicates that
the shape of the first-level aggregates is close to spherical one. The
surface of samples I and II may be characterized as smooth and that
of samples III as surface with feebly marked roughness. At the sec-
ond structure level, particles of samples I and II aggregate (the
slope of SAXS curves changes greatly), forming surface fractals of
the same size (d = 310 nm) with rough, branched surface (see Table
2; D ? 3). Particles of samples III aggregate into mass fractals with
the mean diameter ds P 258 nm (see Table 2).
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N4. Discussion

The sequence of the fractal aggregation types of xerogels (start-
ing from the lowest level) is as follows: M ? S ? M, M ? S ? S and
S ? S for samples I, II and III respectively. The difference in the
methods for the preparation of precursors (precipitation hydrox-
ides from aqueous solutions and sol–gel in alcohol-aqueous solu-
tions) tells on the number of fractal aggregation levels of
xerogels (see Fig. 2(a)–(c)), Table 2). For instance, for hydroxide
xerogels (I, II) three-level fractal structures and for sol–gel samples
(III) two-level fractal structures are observed. It is evident that this
difference is associated with a difference in the coagulation kinet-
ics of hydroxide sols (I, II) and polymeric organic–inorganic zirco-
nium complexes (III), which depend on the nature of the dispersion
Please cite this article in press as: K.V. Kravchyk et al., J. Non-Cryst. Solids (20
E
D

P
Rmedium, disperse phase concentration, salvation shell, double

electrical layer, etc. In the sol–gel technology, in comparison with
precipitation of hydroxides from aqueous solutions, there is slow
sol coagulation due to the use of dilute stock solutions, particle sur-
face passivation by hydrocarbon radicals, and limitation of particle
diffusion caused by the viscosity of alcoholic sol. The type of coag-
ulation (fast, slow) has an effect on the fractal dimension of aggre-
gates [30]. The fractal dimension of aggregates obtained under
slow coagulation conditions is larger than that of aggregates ob-
tained under fast coagulation conditions [30]. This is observed for
xerogel clusters at the first structure level (see Table 2; D = 2.75
for sample III, D = 1.1 and 1.5 for samples I and II). The larger fractal
dimension of xerogels III indicates higher organization of nanopar-
ticles in sol–gel clusters as against zirconium hydroxide clusters
[30]. The effect of hydroxide precipitation conditions (I and II) on
the type of fractal aggregation manifests itself at the third struc-
ture level. In the case coprecipitation (II), surface-fractal agglomer-
ates with rough surface (D = 2.7) are formed at the third structure
level instead of mass-fractal agglomerates, which are characteristic
of sequential precipitation of hydroxides (I). In this case, the size of
agglomerates increases by a factor of 1.15. Taking into account the
difference in the structure of mass and surface fractals [8], it be-
comes understandable why the filtration coefficient of samples I
is by an order of magnitude larger than that of samples II (Table
1). During filtration through a hydroxide precipitate with sur-
face-fractal aggregation, water will easily pass through the surface
layer and be retained in the bulk. The precipitates with mass-frac-
tal aggregation have a loose structure in the whole volume, there-
fore water passes easily through the precipitate layer at a high rate.
The adverse effect of the degree of hydration of precipitates on
their filterability should also be taken into account. The higher
water content of precipitates II as against precipitates I (Table 1)
makes for poorer filterability [29]. It should be noted that xerogels
I are characterized by weak bonds between particles in comparison
with xerogels II. This manifest itself by the friability of the former
(aggregates of particles I easy broken up on light pressure on them,
whereas a certain force is required to crush aggregates II (Table 1)).

The sequence of the fractal aggregation types of calcined xero-
gels (solid solutions of 0.97ZrO2�0.03Y2O3 oxides) I and II is S ? S
and for samples III S ? M (Table 2). During the thermal decompo-
sition of air-dry samples I, II and III at 670–870 K, a labile active
reaction medium begins to form, in which nanoclusters of zirco-
nium and yttrium oxides are generated. Their interaction in a solid
is determined by diffusion limitation (cluster growth is limited by
the distance which depends on the diffusion coefficient of metals)
09), doi:10.1016/j.jnoncrysol.2009.09.012
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[30]. It follows from comparison of fractal parameters (number of
levels and fractal size) of xerogels and calcined samples I and II that
when xerogels are heat-treated at 870 K, there is a weak interac-
tion between the clusters of the first structure level. This result
in the formation of two-level fractal structure of initial precipitates
of 0.97ZrO2�0.03Y2O3 oxides.

It is evident from the above result that the crystal structure
(Fig. 1, Table 1) and the structure parameters of calcined samples
I and II (Fig. 2(d) and (e)), Table 2) are identical. However, samples
I and II (as well as corresponding xerogels) differ widely in the
strength of aggregates (agglomerates) (Table 1). This is corrobo-
rated by distribution curves for aggregated particles of samples I
and II after calcinations at 870 K (Fig. 3). As is seen from Fig. 3
and 80–90% conglomerates of particles of samples I and II formed
at a higher structure level is characterized by a mean size of
d = 11 lm and d = 240 lm respectively. Agglomerates I with weak-
er bonds between particles are readily broken by ultrasound to a
lower dimensional level. It is obvious that the difference in the
strength of aggregates of oxides is associated with the difference
in the fractal types of precursors (hydroxides). It is known [7] that
the nanostructures of the first structure level are ‘bricks’ of which
hierarchic nanostructures are made up at higher dimensional lev-
els (aggregate–agglomerate–conglomerate) (Fig. 3). Such ‘bricks’
for precursors I and II are mass-fractal nanostructures (Table 2).
The difference between the nanostructures of xerogels I and II
manifests itself at the third structure level. As follows from the re-
sults presented (Table 2), the ratio of the numbers of the levels of
fractal types, M: S, in the order I, II, III is 2: 1, 1: 2, 0: 2 respectively.
The weak bonds between the particles of the end product
(0.97ZrO2�0.03Y2O3) may be due to the larger content of mass
(loose) fractals of xerogels. In this case, both the pressability of
oxide powders and the green density of pressed samples decreases.
Otherwise, the pressability increases with increasing of the content
of surface (denser) fractals (see Table 1 and 2). Thus, the self-
assembly of particles in precursors determines the technological
properties of ZrO2-based oxides. There results demonstrate clearly
the manifestation of the effect of topochemical memory [5].

As follows from Table 1, the mean particle size at the first struc-
ture level of calcined samples I, II and III (dSPH = 12 nm, dCPH =
11 nm, dsol–gel = 18 nm) agrees with the size of the coherent-scat-
tering region (CSP) (dSPH = 13 nm, dCPH = 9 nm, dsol–gel = 17 nm).
Thus the results obtained by the SAXS method and wide-angle
X-ray diffraction showed a good agreement, which confirms the
results obtained to be reliable and the investigation of disperse
systems by the SAXS method to be worth-while.
379
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5. Conclusions

The effect of the method for the preparation of the precursor of
yttrium-stabilized zirconium dioxide (precipitation of hydroxides
from aqueous solutions and sol–gel from alcoholic solutions) and
the conditions of preparation of hydroxides (sequential precipita-
tion and coprecipitation) on the fractal structure of xerogels and
oxides with fluorite structure has been studied.
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Please cite this article in press as: K.V. Kravchyk et al., J. Non-Cryst. Solids (20
E
D

P
R

O
O

F

It has been shown that the difference of the methods manifests
itself clearly in xerogel nanostructures, viz. by the number of frac-
tal aggregation levels (three levels in hydroxide precipitates and
two in sol–gel) and the absence of mass-fractal aggregation in
sol–gel. The difference in the conditions of preparation of hydrox-
ides manifests itself by the sequence of fractal types.

The correlation: nature of precursor – type of fractal aggrega-
tion – technological properties of ZrO2 powders has been estab-
lished. It is been shown that the mass-fractal aggregation of
precursors contributes to good filtration of hydroxide precipitates
and allows preparation of oxides with soft, readily destructible
aggregates, and that surface-fractal aggregation makes for good
pressability of oxides.
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